
Assignment 3

csci2200, Algorithms

Instructions:

• Honor code: Work on this assignment alone, or with one partner. Between
different teams, Collaboration is at level 1 [verbal collaboration only]

• Check out the Homework guidelines on class website.

1. Breaking eggs: Suppose you have an n-stories high building, and a bunch of eggs. An egg
has a certain level l at which , if thrown from any level ≥ l , it breaks. For example, an egg
might have l = 7 meaning you can safely throw the egg down from levels 1 through 6, and it
will not break; but if you through the egg from a level 7 or higher, it breaks.

You are given a building and a bunch of eggs (all identical) and your goal is to find out the
level l of the eggs. While you think about the problem, you can assume n = 100 (i.e. 100-level
high building). But describe your solutions in terms of n1

(a) Describe an approach that only breaks one egg to find out l. How many throws does it
do?

What we expect: Explain the rationale of the algorithm and give pseudocode. Its analysis
as function of n.

(b) Describe an approach that minimizes the number of throws. How many eggs might it
break?

What we expect: Explain the rationale of the algorithm and give pseudocode. Its analysis
as function of n.

(c) Assume now you have two eggs. Describe an approach that minimizes the number of
throws.

What we expect: Explain the rationale of the algorithm and give pseudocode. Its analysis
as function of n.

1This is from Kleinberg-Tardos textbook; also reported as an interview question in 2014 by an alum

1

Algorithms: csci2200 Laura Toma, Bowdoin College

2. Stoogesort: One of your colleagues at work has proposed the following sorting algorithm,
and your task is to evaluate it.

Stooge-Sort(A, i, j)
if A[i] > A[j]: swap A[i]↔ A[j]
if i + 1 ≥ j: return
k ← b(j − i + 1)/3c
Stooge-Sort(A, i, j − k)
Stooge-Sort(A, i + k, j)
Stooge-Sort(A, i, j − k)

(a) Correctness:

do not turn in Work through an example and argue briefly that Stooge-Sort correctly sorts any
array of one element.

do not turn in Work through an example and argue briefly that Stooge-Sort correctly sorts any
array of two elements.

do not turn in Consider the algorithm but with the first line (that swaps elements A[i] and A[j])
missing. Argue that it would not correctly sort by showing a simple counter-example.

do not turn in Work through an example array of 3 elements and see how it is getting sorted by
Stooge-Sort.

i. Consider the state of the array A after the first recursive call finished and before
starting the second recursive call (and assume the the recursive call correctly sorts).
Consider the largest n/3 elements in A. Where might they reside? Make a statement
and argue (briefly) why it’s correct.
What we expect: Statement: Argument: ...

ii. Consider the state of the array A after the second recursive call finished and before
starting the third recursive call (and assume the recursive calls sort correcty).
Consider the largest n/3 elements in A. Where might they reside? Make a statement
and argue (briefly) why it’s correct.
What we expect: Statement: Argument: ...

(b) Running time: Give a recurrence for the worst-case running time of Stooge-Sort and
a tight asymptotic (Θ-notation) bound on the worst-case running time.

What we expect: The recurrence, illustrate the process to find its solution, and its
solution.

3. Select the
√
n-closest: Given an unordered sequence S of n elements (for simplicity, assume

items are integers or real numbers), describe an efficient method for finding the d
√
ne elements

whose values are closest to (the value of) the median of S. What is the running time of your
method? Aim for linear time.

What we expect: The rationale of the algorithm, pseudocode, analysis

2

Algorithms: csci2200 Laura Toma, Bowdoin College

4. Merging sorted lists: Assume you have k sorted arrays containing a total of n elements,
and you want to merge them together in a single (sorted) array containing all n elements. For
simplicity you may assume that the k arrays contain the same number of elements, namely
n/k elements each.

(a) Approach 1: merge array 1 with array 2, then merge the result with array 3, then merge
the result with array 4, and so on. What is the worst-case running time ?

What we expect: Detailed analysis of this approach

(b) Approach 2: split the set of k arrays into two sets of k/2 arrays, merge each one
recursively, then use the standard 2-way merge procedure (from mergesort) to combine
the two resulting arrays. What is the worst-case running time ?

What we expect: A recurrence , the recurrence depth, and the solution.

(c) Approach 3: Give another approach (to merge the k arrays) that uses a heap, and runs
in O(n lg k)-time.

What we expect: The idea of the algorithm, pseudo-code, analysis

3

