# Assignment 7 

## Instructions:

- Honor code: Work on this assignment with at most one partner. Between different teams, Collaboration is at level 1 [Verbal collaboration only]
- Write each problem on a separate page; If a problem has multiple parts, you can write all parts on the same page, as long as you leave space in between them.

1. Assume you are given a DAG (directed acyclic graph) $G$, and you want to compute longest paths rather than shortest. The edges do not have weights; the length of a path is the number of edges on the path.
(a) Given a vertex $u$ in $G$, describe how to compute the longest path from $u$. Ideally your algorithm will run in $O(V+E)$ time (Hint: dynamic programming).
(b) Describe how to compute the longest path in $G$. Ideally your algorithm will run in $O(V+E)$ time.

Note: The problem of determining the longest path is known to be NP-complete on arbitrary graphs. On DAGs it can be solved in linear time.
2. Given a DAG, design a linear time algorithm to determine whether there is a directed path that visits each vertex exactly one.

Notes: In an undirected graph $G$ : A path that visits each vertex exactly once is called a Hamiltonian path. A cycle that visits each vertex once is called a Hamiltonian cycle, and a graph that has a Hamiltonian cycle is called a Hamiltonian graph. The problem of determining whether an arbitrary graph has a Hamiltonian path/cycle is known to be NP-complete. On DAGs this problems can be solved in linear time.

