Dynamic Programming and Greedy: Review

Examples in lectures and labs

Dynamic programming:

- Playing a board game
- Rod cutting

- Knapsack
- Pharmacist

- Fibonacci
- Longest TRUE interval
- LCS (longest common subsequence)
- Optional: Robbing a house
- Optional: Playing a game
- This week: Longest increasing subsequence

- This week: Unbounded knapsack
- Optional Skis and skiers
$\xrightarrow{\text { Greedy: }}$

- A different pharmacist problem (all bottles have same cost) \leftharpoondown
- Optional: Matching points on a line
- Optional: Greedy skis and skiers

1 Rod cutting

- The problem: Given a rod of length n and a table of prices $p[i]$ for $i=1,2,3, \ldots, n$, determine the maximal revenue obtainable by cutting up the rod and selling the pieces.
- Notation and choice of subproblem: We denote by $\operatorname{maxrev}(x)$ the maximal revenue obtainable by cutting up a rod of length x. To solve our problem we call maxrev (n).
- Recursive definition of $\operatorname{maxrev}(n)$:

```
maxrev(x)
    & if (x\leq0): return 0
    For i = 1 to n: compute p[i] + maxrev (x-i) and keep track of max
    RETURN this max
```

- Correctness: see notes.
- Dynamic programming solution, top-down with memoization:

We create a table of size [0..n], where table $[i]$ will store the result of maxrev (i). We initialize all entries in the table as 0 . To solve the problem, we call $\operatorname{maxrev} D P(n)$.

```
maxrevDP(x)
    if (x\leq0): return 0
    IF table [x] }=0\mathrm{ : RETURN table [x]
    For i = 1 to n: compute p[i] + maxrevDP (x-i) and keep track of max
    table[x] = max
    RETURN table[x]
```

- Dynamic programming, bottom-up:

maxrevDP_iterative(x)

```
(create table \([0 . . n]\) and initialize table \([i]=0\) for all \(i\)
    for ( \(k=1 ; k \leq n ; k++\) )
        for \((i=1 ; i \leq k ; i++)\)
            set table \([k]=\max \{t a b l e[k], p[i]+\) table \([k-i]\}\)
    RETURN table[n]
```

- Analysis: $O\left(n^{2}\right)$
- Computing full solution:

2 0-1 Knapsack

- The problem: We are given a knapsack of capacity W and a set of n items; an each item i, with $1 \leq i \leq n$, is worth $v[i]$ and has weight $w[i]$ pounds. Assume that weights $w[i]$ and the total weight W are integers. The goal is to fill the knapsack so that the value of all items in the knapsack is maximized.
- Notation and choice of subproblem: Denote by optknapsack (k, w) the maximal value obtainable when filling a knapsack of capacity w using items among items 1 through k. To solve our problem we call optknapsack (n, W).
- Recursive definition of optknapsack (k, w) :

```
optknapsack \((k, w)\)
    if \((w \leq 0)\) or \((k \leq 0)\) : return \(0 / /\) basecase
    \(\operatorname{IF}(\) weight \([k] \leq w):\) with \(=\) value \([k]+\operatorname{optknapsack}(k-1, w-\) weight \([k])\)
    ELSE: with \(=0\)
    without \(=\operatorname{optknapsack}(k-1, w)\)
    RETURN max \(\{\) with, without \(\}\)
```

- Correctness: see notes.
- Dynamic programming solution, top-down with memoization: We create a table table[1..n][1..W], where table $[i][w]$ will store the result of optknapsack (i, w). We initialize all entries in the table as 0 . To solve the problem, we call optknapsackDP(n,W).
optknapsackDP (k, w)
if $(w \leq 0)$ or $(k \leq 0)::$ return 0
[IF $($ table $[k][w] \neq 0):$ RETURN table $[k][w]$
IF $(w[k] \leq w):$ with $=v[k]+\operatorname{optknapsackDP}(k-1, w-w[k])$
ELSE: with $=0$
without $=$ optknapsackDP $(k-1, w)$
table $[k][w]=\max \{$ with, without $\}$
RETURN table $[k][w]$
- Dynamic programming, bottom-up:
optknapsackDP_iterative

```
create table[0..n][0..W] and initialize all entries to 0
    for ( \(k=1 ; k<n ; k++\) )
        for \((w=1 ; w<W ; w++)\)
        with \(=v[k]+\) table \([k-1][w-w[k]]\)
        without \(=\) table \([k-1][w]\)
        tabl \(\&[k][w]=\max \{\) with, without \(\}\)
    RETURN table[n][W]
```

- Analysis: $O(n \cdot W)$
- Computing full solution:

3 Pharmacist

- The problem: A pharmacist has W pills and n empty bottles. Bottle i can hold $p[i]$ pills and has an associated cost $c[i]$. Given $W, p[1 . . n]$ and $c[1 . . n]$, find the minimum cost for storing the pills using the bottles.
- Notation and choice of subproblem: Denote by $\operatorname{MinPill}(i, j)$ the minimum cost obtainable when storing j pills using bottles among 1 through i. To solve our problem we call $\operatorname{minPill}(n, W)$.
- Recursive definition of $\operatorname{minPill}(i, j)$:
$\operatorname{minPill}(i, j)$
if $(j \leq 0)$: return $0 / /$ no pills left
IF $(i==0$ and $j>0)$: return $\infty / /$ have pills, but no bottles, sol not possible
with $=c[i]+\operatorname{minPill}(i-1, j-p[i])$
without $=\operatorname{minPill}(i-1, j)$
RETURN min $\{$ with, without \}
- Correctness:
- Dynamic programming solution, top-down with memoization: We create table[1..n][1..W], where table $[i][j]$ will store the result of $\min \operatorname{Pill}(i, j)$. We initialize all entries in the table as 0 . To solve the problem, we call $\min \operatorname{Pill} D P(n, W)$.

$\operatorname{minPillDP}(i, j)$

if $(j \leq 0)$: return $0 / /$ no pills left
IF $(i==0$ and $j>0)$: return $\infty / /$ have pills, but no bottles, sol not possible
\square
IF (table $[i][j] \neq 0)$: RETURN table $[i][j]$
with $=c[i]+\operatorname{minPillDP}(i-1, j-p[i])$
without $=\operatorname{minPillDP}(i-1, j)$
table $[i][j]=\min \{$ with, without $\}$
RETURN table[i]j]

- Dynamic programming, bottom-up:
minPill_iterative
create table $[0 . . \mathrm{n}][0 . . \mathrm{W}]$ and initialize all entries to 0
for $(i=1 ; i<n ; i++)$
for $(j=1 ; j<W ; j++)$
with $=c[i]+\operatorname{table}[i-1][j-p[i]]$
without $=$ table $[i-1][j]$
table $[i][j]=\min \{$ with, without $\}$
RETURN table $[n][W]$
- Analysis: $O(n \cdot W)$
- Computing full solution:

4 Longest True interval

- The problem: Suppose we are given an array $A[1 . n]$ of booleans. We want to find the longest interval $A[i . . j]$ such that every element in the interval is true - in other words, $A[i], A[i+$ $1], . ., A[j]$ are all true.
- Notation and choice of subproblem: Denote by $G(x)$ to be the length of the longest suffix ${ }^{1}$ of $A[1 . . x]$ that is all true. In other words, $G(x)$ is the largest integer l such that $A[x-l+$ 1], $A^{2}[x-l+2], . ., A[x]$ are all true, or 0 if $A[x]$ is false.
- Recursive definition of $G(x)$:
$\mathbf{G}(x)$
IF $(x==1)$: return $A[1]$
else

$$
\text { IF } A[x]==\text { False: return } 0 \text { else return } 1+G(x-1)
$$

- Correctness:
- Dynamic programming solution, top-down with memoization: We create table[0..n], where table $[i]$ will store the result of $G(i)$. We initialize all entries in the table as 0 . To solve the problem, we call $G_{-} D P(0), G_{-} D P(1), G_{-} D P(2), \ldots$ to fill the table and then return the max element in this table.

```
G_DP(x)(x)
    IF (x== 1): return A[1]
    else
        IF (table[x] = 0): RETURN table[x]
        IF A[x] == False: answer=0 else answer=1+G_DP(x-1)
    table[x]= answer
        return answer
```

- Dynamic programming, bottom-up:
- Analysis: $O(n)$
- Computing full solution:

[^0]- The problem: Given two arrays $X[1 . . n]$ and $Y[1 . . m]$, find their longest common subsequence.
- Notation and choice of subproblem: Denote by $c(i, j)$ the length of the LCS of X_{i} and Y_{j}, where X_{i} is the array consisting of the first i elements of X, and Y_{j} is the array consisting of the first j elements of Y. To solve the problem, we call $c(n, m)$
- Recursive definition of $c(i, j)$:

```
c(i,j)
```

IF ($i==0$ or $j==0$): return 0
else
IF $X[i]==Y[j]$: return $1+c(i-1, j-1)$
Else: return $\max \{c(i-1, j), c(i, j-1)\}$

- Correctness:
- Dynamic programming solution, top-down with memoization: We create table[0..n][0..m], where table $[i][j]$ will store the result of $c(i, j)$. We initialize all entries in the table as 0 and call $c_{-} D P(n, m)$.
c_DP (i, j)
IF ($i==0$ or $j==0$): return 0
else
IF (table $[i][j] \neq 0$): RETURN table $[i][j]$
IF $X[i]==Y[j]$: answer $1+c_{-} D P(i-1, j-1)$
Else: answer $=\max \left\{c(i-1, j), c_{-} D P(i, j-1)\right\}$
table $[x]=$ answer
return answer
- Dynamic programming, bottom-up:
- Analysis: $O(m \cdot n)$
- Computing full solution:

[^0]: ${ }^{1}$ An array $B[1 . . m]$ is a suffix of an array $A[1 . . n]$ if $A[n-k]=B[m-k]$ for $0 \leq k<m$

