Dynamic Programming and Greedy: Review

Examples in lectures and labs)
Dynamic programming: / b (-)
e Playing a board game
| ——

e Rod cutting

e Knapsack j %D —>¢ V\\y b\b & C\i >

e Pharmacist

e Fibonacci ~,
e Longest TRUE. interval

e LCS (longest common subsequence) >

e Optional: Robbing a house W *
e Optional: Playing a game \

e This week: Longest increasing subsequence
e This week: Unbounded knapsack —

e Optional Skis and skiers Y
Greede
o Activity selection ~—
Guarding a museum ——
e A different pharmacist problem (all bottles have same cost) c—
Optional: Matching points on (@ R

e Optional: Greedy skis and skiers
—

Algorithms: csci2200 Laura Toma, Bowdoin College
1 Rod cutting
/\/

e The problem: Given a rod of length n and a table of prices p[i] for i = 1,2, 3, ..., n, determine
the maximal revenue obtainable by cutting up the rod and selling the pieces.

Notation and choice of subproblem: We denote by.mazreu(x) the maximal revenue obtainable
by cutting up a rod of length z. To solve our problem we call maxrev(n).

Recursive definition of maxrev(n):

maxrev (z)
if (x <0): return 0

For i = 1 to n: compute p[i] + maxrev(z — i) and keep track of max

RETURN this max

Correctness: see notes.

Dynamic programming solution, top-down with memoization:

We create a table of size [0..n], where table[i] will store the result of maxrev(i). We initialize
all entries in the table as 0. To solve the problem, we call mazrevDP(n).

maxrevDP (z)
if (z <0): return 0
DF table|z] # 0: RETURN table[z]

For i = 1 to n: compute p[i] + maxrevDP(z — i) and keep track of max

—

Ugble[x] = max

RETURN table[x]

e Dynamic programming, bottom-up:

maxrevDP _iterative(x)
create table[0..n] and initialize table[i] = 0 for all
for (k =1k <n;k++)

for (i = 150 < k;i + +)
set table[k] = max{table[k|, p[i] + table[k — i]}

RETURN table[n]

e Analysis: O(n?)

e Computing full solution:

Algorithms: csci2200 Laura Toma, Bowdoin College
2 0—1 Knapsack

e The problem: We are given a knapsack of capacity W and a set of n items; an each item i,
with 1 <4 < n, is worth v[i] and has weight w[i] pounds. Assume that weights w]i] and the
total weight W are integers. The goal is to fill the knapsack so that the value of all items in
the knapsack is maximized.

e Notation and choice of subproblem: Denote by optknapsack @‘ maximal value obtainable
when filling a knapsack of capacity w using items among items”1 through k. To solve our
problem we call optknapsack(n, W).

e Recursive definition of optknapsack(k,w):

optknapsack(k, w)
if (w < 0) or (k <0) : rgturn 0 //basecase
IF (weight[k] < w): with = value[k] + optknapsack(k — 1,w — weight[k])
ELSE: with =0
without = optknapsack(k — 1,w)
RETURN max { with,without }

[———

e Correctness: see notes.

e Dynamic programming solution, top-down with memoization: We create a table table[1..n][1..W],
where table[i][w] will store the result of optknapsack(i, w). We initialize all entries in the table
as 0. To solve the problem, we call optknapsackDP(n, W).

optknapsackDP (k, w)

if (w <0) or (k <0):: return 0
é IF (table[k][w] # 0): RETURN table[k][w]
-
(wl[k] < w): with = v[k] + optknapsackDP(k — 1,w — wl[k])
ELSE: with =0
without = optknapsackDP(k — 1, w)
tablelk][w] = max { with,without }

RETURN table[k][w]

e Dynamic programming, bottom-up:

Algorithms: csci2200 Laura Toma, Bowdoin College

optknapsackDP _iterative
create table[0..n][0..W] and initialize all entries to 0
for (k=1;k <n;k++)

for (w = 1w < Wi;w++)
with = v[k] + table[k — 1][w — w[k]]
= table[k — 1][w]

RETURN table[n][W]

e Analysis: O(n- W)

e Computing full solution:

Algorithms: csci2200 Laura Toma, Bowdoin College
3 Pharmacist

e The problem: A pharmacist has W pills and n empty bottles. Bottle i can hold p[i] pills and
has an associated cost c[i]. Given W, p[l..n] and ¢[1..n], find the minimum cost for storing
the pills using the bottles.

e Notation and choice of subproblem: Denote by MinPil the minimum cost obtainable
when storing j pills using bottles among 1 through i. To solve our problem we call minPill(n, W).

e Recursive definition of minPill(i, j):

minPill(s, j)
if (5 <0): return 0 //no pills left
IF (i == 0 and j > 0): return oo //have pills, but no bottles, sol not possible
with = ¢[i] + minPill(i — 1,5 — p[i])
without =minPill(i — 1,)

RETURN iin'{ with, without }

e Correctness:

e Dynamic programming solution, top-down with memoization: We create ‘table[l..n][1..W],
where table[i][j] will store the result of minPill(i,j). We initialize all entries in the table as
0. To solve the problem, we call minPillDP(n, W).

minPillIDP (7, j)

if (5 <0): return 0 //no pills left

IF (i == 0 and j > 0): return oo //have pills, but no bottles, sol not possible
C\/F table(i][j] # 0): RETURN table[i][7]

with = ¢[i] + minPil11DP(i — 1,5 — pli])

without =minPillDP(i — 1, j)
&able[ﬂ [7] = min { with, without }

RETURN tableli]j]

e Dynamic programming, bottom-up:

Algorithms: csci2200 Laura Toma, Bowdoin College

minPill iterative
create table[0..n][0..W] and initialize all entries to 0
for (i =1;i <n;i++)
for (j=17<W;j++)
with = c[i] + table[i — 1][j — p[i]]

without = table[i — 1][/]
table[i][j] = min { with, without }

RETURN table[n][W]

e Analysis: O(n- W)

e Computing full solution:

Algorithms: csci2200 Laura Toma, Bowdoin College
4 Longest True interval

e The problem: Suppose we are given an array A@n] of booleans. We want to find the longest
interval A[i..j] such that every element in the interval is true — in other words, A[i], A[i +
1], .., A[j] are all true.

Notation and choice of subproblem: Denote by G(z) to be the length of the longest suffix!
of A[l..x] that is all true In other words, G(z) is the largest integer 1 such that Afx — 1+

AT:?—/—I— 2] are all true, or 0 if Alx] is false.
e Recursive definition of G(z):
G(z)
IF (z ==1): return A[l]
a—,
else
IF A[z] == False: return 0 else return@ G(z—1)

e Correctness:

e Dynamic programming solution, top-down with memoization: We create table|0..n], where
table[i] will store the result of G (7). We initialize all entries in the table as 0. To solve the
problem, we call G_DP(0), G_-DP(1), G_DP(2), ... to fill the table and then return the max

element in this table.

G_DP(x)(z)

IF (x ==1): return A[l]
else

EF (table[z] # 0): RETURN table|z]
IF A[z] == False: answer= 0 else answer= 1+ G_DP(z — 1)

table[x] = answer

return answer

e Dynamic programming, bottom-up:

e Analysis: O(n)

e Computing full solution:

!An array B[l..m] is a suffix of an array A[l..n] if A[n — k] = Bim — k] for 0 < k <m

Algorithms: csci2200 Laura Toma, Bowdoin College
5 LCS

e The problem: Given two arrays X[1..n] and Y[1..m], find their longest common subsequence.

e Notation and choice of subproblem: Denote by c(7,7) the length of the LCS of X; and Y},
where X; is the array consisting of the first ¢ elements of X, and Yj is the array consisting of
the first j elements of Y. To solve the problem, we call ¢(n,m)

e Recursive definition of ¢(i, 5):

c(i, j)
IF (i ==0or j ==0): return 0
else

IF X[i] ==Y[j]: return 1 +¢(i — 1,5 — 1)
Else: return max{c(i — 1,7),c(i,5 — 1)}

e Correctness:

e Dynamic programming solution, top-down with memoization: We create table[0..n][0..m],
where table[i|[j] will store the result of ¢(7, 7). We initialize all entries in the table as 0 and
call c.DP(n,m).

¢ DP(i,j)

IF (i ==0or j ==0): return 0
else

IF (tableli][j] # 0): RETURN table[i][]]

IF X[i]| ==Y|[j]: answer 1 + c.DP(i — 1,5 —1)
Else: answer= max{c(i — 1,5),c.DP(i,j — 1)}
table[x] = answer

return answer

e Dynamic programming, bottom-up:
e Analysis: O(m - n)

e Computing full solution:

