
Dynamic Programming and Greedy: Review

Examples in lectures and labs

Dynamic programming:

• Playing a board game

• Rod cutting

• Knapsack

• Pharmacist

• Fibonacci

• Longest TRUE interval

• LCS (longest common subsequence)

• Optional: Robbing a house

• Optional: Playing a game

• This week: Longest increasing subsequence

• This week: Unbounded knapsack

• Optional Skis and skiers

Greedy:

• Activity selection

• Guarding a museum

• A different pharmacist problem (all bottles have same cost)

• Optional: Matching points on a line

• Optional: Greedy skis and skiers

1



Algorithms: csci2200 Laura Toma, Bowdoin College

1 Rod cutting

• The problem: Given a rod of length n and a table of prices p[i] for i = 1, 2, 3, ..., n, determine
the maximal revenue obtainable by cutting up the rod and selling the pieces.

• Notation and choice of subproblem: We denote by maxrev(x) the maximal revenue obtainable
by cutting up a rod of length x. To solve our problem we call maxrev(n).

• Recursive definition of maxrev(n):

maxrev(x)

if (x ≤ 0): return 0

For i = 1 to n: compute p[i] + maxrev(x− i) and keep track of max

RETURN this max

• Correctness: see notes.

• Dynamic programming solution, top-down with memoization:

We create a table of size [0..n], where table[i] will store the result of maxrev(i). We initialize
all entries in the table as 0. To solve the problem, we call maxrevDP (n).

maxrevDP(x)

if (x ≤ 0): return 0

IF table[x] 6= 0: RETURN table[x]

For i = 1 to n: compute p[i] + maxrevDP(x− i) and keep track of max

table[x] = max

RETURN table[x]

• Dynamic programming, bottom-up:

maxrevDP iterative(x)

create table[0..n] and initialize table[i] = 0 for all i

for (k = 1; k ≤ n; k + +)

for (i = 1; i ≤ k; i + +)

set table[k] = max{table[k], p[i] + table[k − i]}

RETURN table[n]

• Analysis: O(n2)

• Computing full solution:

2



Algorithms: csci2200 Laura Toma, Bowdoin College

2 0− 1 Knapsack

• The problem: We are given a knapsack of capacity W and a set of n items; an each item i,
with 1 ≤ i ≤ n, is worth v[i] and has weight w[i] pounds. Assume that weights w[i] and the
total weight W are integers. The goal is to fill the knapsack so that the value of all items in
the knapsack is maximized.

• Notation and choice of subproblem: Denote by optknapsack(k,w) the maximal value obtainable
when filling a knapsack of capacity w using items among items 1 through k. To solve our
problem we call optknapsack(n,W ).

• Recursive definition of optknapsack(k,w):

optknapsack(k,w)

if (w ≤ 0) or (k ≤ 0) : return 0 //basecase

IF (weight[k] ≤ w): with = value[k] + optknapsack(k − 1, w − weight[k])

ELSE: with = 0

without = optknapsack(k − 1, w)

RETURN max { with, without }

• Correctness: see notes.

• Dynamic programming solution, top-down with memoization: We create a table table[1..n][1..W ],
where table[i][w] will store the result of optknapsack(i, w). We initialize all entries in the table
as 0. To solve the problem, we call optknapsackDP (n,W ).

optknapsackDP(k,w)

if (w ≤ 0) or (k ≤ 0):: return 0

IF (table[k][w] 6= 0): RETURN table[k][w]

IF (w[k] ≤ w): with = v[k] + optknapsackDP(k − 1, w − w[k])

ELSE: with = 0

without = optknapsackDP(k − 1, w)

table[k][w] = max { with, without }

RETURN table[k][w]

• Dynamic programming, bottom-up:

3



Algorithms: csci2200 Laura Toma, Bowdoin College

optknapsackDP iterative

create table[0..n][0..W] and initialize all entries to 0

for (k = 1; k < n; k + +)

for (w = 1;w < W ;w + +)

with = v[k] + table[k − 1][w − w[k]]

without = table[k − 1][w]

table[k][w] = max { with, without }

RETURN table[n][W ]

• Analysis: O(n ·W )

• Computing full solution:

4



Algorithms: csci2200 Laura Toma, Bowdoin College

3 Pharmacist

• The problem: A pharmacist has W pills and n empty bottles. Bottle i can hold p[i] pills and
has an associated cost c[i]. Given W , p[1..n] and c[1..n], find the minimum cost for storing
the pills using the bottles.

• Notation and choice of subproblem: Denote by MinPill(i, j) the minimum cost obtainable
when storing j pills using bottles among 1 through i. To solve our problem we call minPill(n,W ).

• Recursive definition of minPill(i, j):

minPill(i, j)

if (j ≤ 0): return 0 //no pills left

IF (i == 0 and j > 0): return ∞ //have pills, but no bottles, sol not possible

with = c[i] + minPill(i− 1, j − p[i])

without =minPill(i− 1, j)

RETURN min { with, without }

• Correctness:

• Dynamic programming solution, top-down with memoization: We create table[1..n][1..W ],
where table[i][j] will store the result of minPill(i, j). We initialize all entries in the table as
0. To solve the problem, we call minPillDP (n,W ).

minPillDP(i, j)

if (j ≤ 0): return 0 //no pills left

IF (i == 0 and j > 0): return ∞ //have pills, but no bottles, sol not possible

IF (table[i][j] 6= 0): RETURN table[i][j]

with = c[i] + minPillDP(i− 1, j − p[i])

without =minPillDP(i− 1, j)

table[i][j] = min { with, without }

RETURN table[i]j]

• Dynamic programming, bottom-up:

5



Algorithms: csci2200 Laura Toma, Bowdoin College

minPill iterative

create table[0..n][0..W] and initialize all entries to 0

for (i = 1; i < n; i + +)

for (j = 1; j < W ; j + +)

with = c[i] + table[i− 1][j − p[i]]

without = table[i− 1][j]

table[i][j] = min { with, without }

RETURN table[n][W ]

• Analysis: O(n ·W )

• Computing full solution:

6



Algorithms: csci2200 Laura Toma, Bowdoin College

4 Longest True interval

• The problem: Suppose we are given an array A[1..n] of booleans. We want to find the longest
interval A[i..j] such that every element in the interval is true – in other words, A[i], A[i +
1], .., A[j] are all true.

• Notation and choice of subproblem: Denote by G(x) to be the length of the longest suffix1

of A[1..x] that is all true. In other words, G(x) is the largest integer l such that A[x − l +
1], A[x− l + 2], .., A[x] are all true, or 0 if A[x] is false.

• Recursive definition of G(x):

G(x)

IF (x == 1): return A[1]

else

IF A[x] == False: return 0 else return 1 + G(x− 1)

• Correctness:

• Dynamic programming solution, top-down with memoization: We create table[0..n], where
table[i] will store the result of G(i). We initialize all entries in the table as 0. To solve the
problem, we call G DP (0), G DP (1), G DP (2), ... to fill the table and then return the max
element in this table.

G DP(x)(x)

IF (x == 1): return A[1]

else

IF (table[x] 6= 0): RETURN table[x]

IF A[x] == False: answer= 0 else answer= 1 + G DP (x− 1)

table[x] = answer

return answer

• Dynamic programming, bottom-up:

• Analysis: O(n)

• Computing full solution:

1An array B[1..m] is a suffix of an array A[1..n] if A[n− k] = B[m− k] for 0 ≤ k < m

7



Algorithms: csci2200 Laura Toma, Bowdoin College

5 LCS

• The problem: Given two arrays X[1..n] and Y [1..m], find their longest common subsequence.

• Notation and choice of subproblem: Denote by c(i, j) the length of the LCS of Xi and Yj ,
where Xi is the array consisting of the first i elements of X, and Yj is the array consisting of
the first j elements of Y . To solve the problem, we call c(n,m)

• Recursive definition of c(i, j):

c(i, j)

IF (i == 0 or j == 0): return 0

else

IF X[i] == Y [j]: return 1 + c(i− 1, j − 1)

Else: return max{c(i− 1, j), c(i, j − 1)}

• Correctness:

• Dynamic programming solution, top-down with memoization: We create table[0..n][0..m],
where table[i][j] will store the result of c(i, j). We initialize all entries in the table as 0 and
call c DP (n,m).

c DP(i, j)

IF (i == 0 or j == 0): return 0

else

IF (table[i][j] 6= 0): RETURN table[i][j]

IF X[i] == Y [j]: answer 1 + c DP (i− 1, j − 1)

Else: answer= max{c(i− 1, j), c DP (i, j − 1)}
table[x] = answer

return answer

• Dynamic programming, bottom-up:

• Analysis: O(m · n)

• Computing full solution:

8


