
Week 10: Lab
Module 4: Techniques

Collaboration level 0 (no restrictions). Open notes.

1 This week’s practice problems

1. Longest increasing subsequence: A subsequence of a sequence (for example, an array,
linked list or string), is obtained by removing zero or more elements and keeping the rest
in the same order. A subsequence is called a substring if its elements are contiguous in the
original sequence. For example:

(a) gorit, algo, rithms are all substrings of algorithms

(b) grm, lori, lot, agis,gorims are all subsequences of Algorithms

(c) algomi, og are not subsequences of Algorithms

The problem: Given an array A[1..n] of integers, compute the length of a longest increasing
subsequence (A sequence B[1..k] is increasing if B[i] < B[i + 1] for all i = 1..k − 1). For
example, given the array

{5, 3, 6, 2, 1, 5, 3, 1, 2, 5, 1, 7, 2, 8}

your algorihm should return 5 (for e.g. correponding to the subsequence {1, 3, 5, 7, 8}; there
are other subsequences of length 5).

Describe an algorithm which, given an array A[] of n integers, computes the LIS of A.

EXAMPLES:

Input: arr[] = {3, 10, 2, 1, 20}

Output: Length of LIS = 3

The longest increasing subsequence is 3, 10, 20

Input: arr[] = {3, 2}

Output: Length of LIS = 1

The longest increasing subsequences are {3} and {2}

Input: arr[] = {50, 3, 10, 7, 40, 80}

Output: Length of LIS = 4

The longest increasing subsequence is {3, 7, 40, 80}

Input: A[]={0,8,4,12,2,10,6,14,1,9,5, 13,3,11,7,15}

Output: Length of LIS = 6

Explanation:Longest increasing subsequence 0 2 6 9 13 15, which has length 6

1



Input: A[] = {5,8,3,7,9,1}

Output: Length of LIS = 3

Explanation:Longest increasing subsequence 5 7 9, with length 3

If you need a hint, turn to Appendix A.

2



2. Unbounded knapsack: We have n items, each with a value and a positive weight; Item
i has value vi and weight wi. We have a knapsack that holds maximum weight W . The
problem is which items to put in the backpak to maximize its value.

In this problem you’ll consider a variation of the 0 − 1 Knapsack problem, where we have
infinite copies of each item. Describe an algorithm that, given W, {w1, ..., wn} and {v1, ..., vn},
finds the maximal value that can be loaded into the knapsack.

The sequence of steps below will guide you towards the solution

(a) A friend proposes the following greedy algorithm: start with the item with the largest
cost-per-pound, and pick as many copies as fit in the backpack. Repeat.

Show your friend this is not correct by coming up with a counter-example.

(b) Now let’s define a useful sub-problem. With the classical knapsack, once you take an
item, you cannot take it again, so you have fewer items to choose from. So the subproblem
we use has to keep track of both the knapsack size as well as which items are allowed in the
knapsack. We used knapsack(w, i) to be the maximum value we can get for a knapsack of
weight w considering items 1 through i.

For the unbounded knapsack, we have infinite supplies of each item. So we don’t need to
keep track of which items we already included, only of the size of the knapsack. Let K(w)
represent the optimal value for a knapsack of capacity w.

Argue optimal sub-structure:

• Suppose K(w) happens to contain item i.

• Then the remainig items in K(w) must be an optimal solution for ..............................

(c) Come up with a recursive formulation for K(w). (Hint: Consider all the choices, and pick
the best. )
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(d) Develop a DP solution based on this recurrence — either top-down or bottom up. What
is the running time of your algorithm ?
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2 Additional problems

1. Matching points on a line:1 You are given two arrays of n points in one dimension:
red points r1, r2, ..., rn and blue points b1, b2, ..., bn. You may assume that all red points are
distinct and all blue points are distinct. We want to pair up red and blue points, so that each
red point is associated uniquely with a blue point and vice versa. Given a pairing, we assign
it a score which is the sum of distances between each pair of matched points.

Find the pairing (matching) of minimum score. Hint: Aim for an O(n lg n) algorithm. Draw
examples for small valus of n to get intuition.

Example: Consider the input where the red points are r1 = 8, r2 = 1 and the blue points
are b1 = 3 and b2 = 9. There are two possible matchings:

• match r1 to b1 and r2 to b2: the score of this matching is |r1 − b1|+ |r2 − b2| = |8− 3|+
|1− 9| = 13

• match r1 to b2 and r2 to b1: the score of this matching is |r1 − b2|+ |r2 − b1| = |8− 9|+
|1− 3| = 3

The algorithm shoud return the cost of the optimal matching, which is 3.

1Credit: reproduced from Stanford University, cs161, fall 2016-2017

5



2. The skis and skiers problem2 You’ve decided to become a ski bum, and hooked up with
Sugarloaf Ski Resort. They’ll let you ski for free all winter, in exchange for helping their ski
rental shop with an algorithm to assign skis to skiers.

Ideally, each skier should obtain a pair of skis whose heigth matches his or her own height
exactly. Unfortunately, this is generally not possible. We define the disparity between a skier
and his/her skis as the absolute value of the difference between the height of the skier and
the height of the skis. The objective is to find an assignment of skis to skiers that minimizes
the sum of the disparities.

The questions below will guide you towards a solution.

(a) First, let’s assume that there are n skiers and n skis. Consider the following algorithm:
consider all possible assignments of skis to skiers; for each one, compute the sum of the
disparities; select the one that minimizes the total disparity. How much time would this
algorithm take on a 1GHz computer, if there were 50 skiers and 50 skis?

(b) One day, while waiting for the lift, you make an interesting discovery: if we have a short
person and a tall person, it would never be better to give to the shorter person a taller pair
of skis than were given to the taller person. Prove that this is always true.

Hint: see appendix A.

2adapted from B. Thom, Harvey Mudd College

6



(c) Describe a greedy algorithm to assign the skis to skiers, and argue why this algorithm is
correct. What is the time complexity of your algorithm?

(d) Your next task is to design an efficient dynamic programming algorithm for the more
general case where there are m skiers and n pairs of skis (n ≥ m).

Here is some notation that may help you. Sort the skiers and skis by increasing height. Let
hi denote the height of the ith skier in sorted order, and sj denote the height of the jth pair
of skis in sorted order. Let OPT(i, j) be the optimal cost (disparity) for matching the first i
skiers with skis from the set {1, 2, ..., j}. The solution we seek is simply OPT(m, n). Define
OPT(i, j) recursively.
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(e) Now describe a dynamic programming algorithm for the problem. What is the running
time of your algorithm? Explain.

(f) Briefly describe how your algorithm can be modified to allow you to find an actual optimal
assignment (rather than just the cost) of skis to skiers. How does this affect the running time
of your algorithm?
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3 Appendix A: Hints

• Longest increasing subsequence:

Use the following subproblem: Let L(i) be the length of the LIS starting at index i (such that
A[i] is the first element of the LIS).

Express L(i) rercursively.

Assume you computed L(i) for all i = 1, 2, ..., n. How do you find the LIS of A?

• Matching points on a line:

Think greedily, and argue with an exchange argument.

• Skis and skiers

Let P1, P2 be the length of two skiers, and S1, S2 the lengths of the skis. We assume P1 < P2
and S1 < S2. Try proving that pairing P1 with S1 and P2 with S2 is better than pairing P1
with S2 and P2 with S1.

Basically we’d like to show that |P1 − S1| + |P2 − S2| < |P1 − S2| + |P2 − S1|. To do so,
consider all possible cases:

– case 1: P1 < S1 < P2 < S2: we need to show that (S1 − P1) + (S2 − P2) < (S2 −
P1) + (P2− S1). Draw a picture and go from there.

– case 2: ...
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4 Appendix B: Solutions

1. Finding the LIS (Longest Increasing Subsequence):

Notation: Let L(i) be the length of the LIS starting at index i.

To find the LIS(A), we need to return max{L(i), 1 ≤ i ≤ n} Why? Because LIS(A) must
start at some index i in A.

Optimal substructure of L(i): Consider the LIS starting with A[i], and denote it LIS(i).
Let A[j], with i < j, be the element after A[i] in LIS(i). Then LIS(i) must consist of
A[j] + LIS(j).

Recursive formulation: L(i) = 1 + max{L(j) , where 1 ≤ i < j ≤ n and A[i] < A[j]}; or
L(i) = 1, if no such j exists.

Explanation: the length of the longest increasing subsequence starting at index i will be 1
greater than the maximum of lengths of all longest increasing subsequences starting at indices
j after i, where A[i] < A[j], i < j.

The details from here are left to the reader.

Analysis: Without DP, exponential. With DP, O(n2) and using a table of n entries; each
entry takes O(n) to fill.

2. Unbounded knapsack

The sub-problem: Let K(x) represent the optimal value for a knapsack of capacity x. To pick
the next item to add to the knapsack, we have the choice of any of the n items; specifically
we’ll choose the item that maximizes the value in the knapsack.

K(x) = max{vi + K(x− wi), for all 1 ≤ i ≤ n and wi < x} and basecase K(0) = 0

Developing a DP solution around this recurrence is straightforward. First the top-down
recursive solution:

create a table[0..W]

table[0] = 0, and table[i] = -1 for all i = 1, 2, ..., W

return K_with_DP(W, table) // this is the solution we were looking for

K_with_DP(x, table)

if x==0: return 0

//else

if table[x] != -1: return table[x]

//else

table[x] = 0

for i=1 to n

if w[i] < x:

table[x] = max { table[x], v[i] + K_with_DP(x-w[i], table) }

return table[x]

or bottom-up DP:
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create a table K[0..W]

K[0] = 0 //basecase

for x = 1 to W do:

K[x] = 0

for i = 1 to n do:

if w[i] < x: K[x] = max { K[x], v[i] + K[x - w[i]] }

return K[W] // this is the solution we were looking for

The overall running time for both solutions is O(n ·W ).

3. Matching points on a line:

Algorithm: Sort the red and blue points separately, and match them in order, that is, r1
with b1, r2 with b2, and so on (here I assumed that they are numbered in sorted order). This
is a greedy algorithm.

Analysis: O(n lg n) to sort plus O(n) to match.

Correctness: The hardest part is to actually prove that this is always correct.To do so, it is
sufficient to show that there is always a solution that contains the first greedy choice, namely
matching r1 to b1.

Proof: Let O be an optimal matching O and assume that it does not match r1 to b1. Suppose
that r1 is matched with bi and b1 is matched with rj . We modify O so that r1 is matched
with b1 and rj is matched with bi. Denote by O′ the resulting matching. We’ll show that
the cost of O′ is ≤ O, therefore O′ must be an optimal matching. Therefore there exists an
optimal matching that matches r1 to b1.

The cost of O′ is r1 − b1|+ |rj − bi| + ....

The cost of O is r1 − bi|+ |rj − b1| + ....

To show that the cost of O′ is ≤ O, we need to show that |r1−b1|+ |rj−bi| ≤ r1−bi|+ |rj−b1|
Assume wlog that r1 < b1. Then

• case 1: r1 < rj ≤ b1 < bi ...

• case 2: r1 < b1 ≤ rj < bi ...

• case 3: r1 < b1 < bi ≤ rj ...

In each case, draw the points in order to visualize, and ...

4. Skis and skiers:

(a) Solution: Let’s keep the set of skiers fixed. There are n! possible orderings of skis to
skiers. For each order, it takes us O(n) to compute the sum of the disparities. Overall this is
O(n! · n). For n = 50, this is 50 · 50!. A 1GHz computer executes 109 operations per second,
so our algorithm would run in 50 · 50! · 10−9. To compute n! we can use Stirling’s formula
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n! ∼ (ne )n ·
√

2 · pi · n. We have 50 · 50! · 10−9 > 1050 · 10−9 = 1041 seconds. This is more than
1030 years.

(b) Solution: Let P1, P2 be the length of two skiers, and S1, S2 the lengths of the skis. We
assume P1 < P2 and S1 < S2. We’ll prove that pairing P1 with S1 and P2 with S2 is better
than pairing P1 with S2 and P2 with S1.

Basically we’d like to show that |P1 − S1| + |P2 − S2| < |P1 − S2| + |P2 − S1|. To do so
we’ll consider all possible cases:

• P1 < S1 < P2 < S2: we need to show that (S1−P1)+(S2−P2) < (S2−P1)+(P2−S1)

Note that S2−P1 = S2−P2+P2−S1+S1−P1, which means that S1−P1+S2−P2 <
S2− P1.

All the other cases can be shown in a similar way:

• P1 < S1 < S2 < P2: we can see that (S1− P1) + (P2− S2) < (S2− P1) + (P2− S1)

• P1 < P2 < S1 < S2: we can see that (S1− P1) + (S2− P2) < (S1− P2) + (S2− P1)

• S1 < P1 < P2 < S2: we can see that (P1− S1) + (S2− P2) < (P2− S1) + (S2− P2)

• S1 < P1 < S2 < P2: we can see that (P1− S1) + (P2− S2) < (P2− S1) + (S2− P1)

• S1 < S2 < P1 < P2: we can see that (P1− S1) + (P2− S2) < (P1− S2) + (P2− S1)

(c) Solution: Sort the skis and skiers, and pair them up, in order. This is correct because
of (b) above. That is, assume that the optimal solution does not match the skis and skiers
in order. This means there exists a pair of ski, skiers assignments (P1, S1) and (P2, S2) with
P1 < P2 and S1 > S2. According to part (b), we can give S1 to P2 and S2 to P1 and this
results in a better solution — contradiction.

Analysis: Use one of the O(n lg n) sorts (mergesort, quicksort, heapsort) and this runs in
O(n lg n).

(d) Solution: It’s interesting to see that if the number of skis and skiers is the same, the
problem can be solved greedily in O(n lg n) time, while if n > m, then we need dynamic
programming.

To recurse, we’ll want to decrement i and j. Basically this tells us we want to try to find skis
for skier i, and then recurse on the remaining skiers.

To assign skis to skier i, we have two options:

• pair skier i with skis j, and recurse on what’s left

• do not pair skier i with skis j, and recurse on what’s left

We’ll try both and chose the best one.

OPT (i, j) = min{|hi − sj |+ OPT (i− 1, j − 1), OPT (i, j − 1)}

OPT(i, j)

if (i==0) return 0

if (j==0) return $\infty$

if (j<i) return $\infty$

x = |h[i] - s[j]| + OPT(i-1, j-1)

y = OPT(i, j-1)

return min{x, y}
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(e) Solution: We’ll use a table T [1..m][1..n] to store solutions to subproblems. Entry T [i][j]
will store the solution of OPT (i, j).

We initialize the table with some initial value than can be distinguished from a result.

We implement the recursive function OPT(i,j) so that it first checks the table to see if the
result is there. If yes, it returns it, otherwise it computes and stores it in the table.

OPT(i, j)

if (T[i][j] != initial value) return T[i][j]

if (i==0) return 0

if (j==0) return $\infty$

if (j<i) return $\infty$

x = |h[i] - s[j]| + OPT(i-1, j-1)

y = OPT(i, j-1)

T[i][j] = min{x, y}

return min{x,y}

(f) Solution: We can figure out the assignment by examining the table. We start at T [m][n].
This value is either T [m][n−1] or |hm−sm|+T [m−1][n−1]. If the value at T [m][n] is equal
to T [m][n − 1], then we know that hm was NOT paired with sn, so we jump to T [m][n − 1]
and continue. If T [m][n] is equal to |hm − sm|+ T [m− 1][n− 1] then we know that hm was
paired with sn, so we jump to T [m][n− 1] and continue.
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