Lab 14: Shortest Paths Module: Graphs

Collaboration level 0 (no restrictions). Open notes.

1. Step through Dijkstra(G, s, t) on the graph shown below. Complete the table below to show what the arrays d[] and p[] are at each step of the algorithm, and indicate what path is returned and what its cost is. Here D represents the set of vertices that have been removed from the PQ and their shortest paths found (in the notes we denoted it by S).

	d[<i>s</i>]	d[<i>u</i>]	d[<i>v</i>]	d[t]	p[s]	p[<i>u</i>]	p[v]	p[t]
When entering the first while loop	0	∞	∞	∞	None	None	None	None
for the first time, the state is:								
Immediately after the first ele-	0	3	∞	9	None	S	None	s
ment of D is added, the state is:								
Immediately after the second ele-								
ment of D is added, the state is:								
Immediately after the third ele-								
ment of D is added, the state is:								
Immediately after the fourth ele-								
ment of D is added, the state is:								

2. Consider the directed graph below and assume you want to compute SSSP(s).

- (a) Run Dijkstra's algorithm on the graph above step by step. Are there any vertices for which d[x] is correct? Are there any vertices for which d[x] is incorrect? Why?
- (b) Now run Bellman-Ford algorithm, and assume the edges are relaxed in the following order: {bd, cb, ab, sc, sa}. For each round of relaxation, show the distances d[x] at the end of that round.
- (c) How many rounds of relaxation are necessary for this graph? In general, what is the worst-case number of rounds in Bellman-Ford algorithm for a graph of |V| vertices?(in this case, |V| = 5) Why the difference? Can you connect the number of rounds necessary with something in the graph?
- (d) Give an order of relaxing edges for the graph above which correctly computes shortest paths for all vertices after just one round.
- 3. Give example of a graph G=(V,E) with an arbitrary number of vertices for which one round of relaxation is always sufficient, no matter the order in which the edges are relaxed.
- 4. Give example of a graph G=(V,E) with an arbitrary number of vertices for which |V| 1 rounds of relaxation are always necessary in the worst case.
- 5. Consider a directed graph G, and assume that instead of shortest paths we want to compute *longest paths*. Longest paths are defined in the natural way, i.e. the longest path from u to v is the path of maximum weight among all possible paths from u to v. Note that if the graph contains a positive cycle, then longest paths are not well defined (for the same reason that shortest paths are not well defined when the graph has a negative cycle). So what we mean is the *longest simple path*, (a path is called *simple* if it contains no vertex more than once).

Show that the the *longest simple path* problem does not have optimal substructure by coming up with a small graph that provides a counterexample. Note: Finding longest (simple) paths is a classical *hard* problem, and it is known to be NP-complete.

6. Prove that the following claim is false by showing a counterexample:

Claim: Let G = (V, E) be a directed graph with negative-weight edges, but no negativeweight cycles. Let w, w < 0, be the smallest weight in G. Then one can compute SSSP in the following way: transform G into a graph with all positive weights by adding -w to all edges, run Dijkstra, and subtract from each shortest path the corresponding number of edges times -w. Thus, SSSP can be solved by Dijkstra's algorithm even on graph with negative weights.

7. You are given an image as a two-dimensional array of size $m \times n$. Each cell of the array represents a pixel in the image, and contains a number that represents the color of that pixel (for e.g. using the RGB model).

A segment in the image is a set of pixels that have the same color and are **connected**: each pixel in the segment an be reached from any other pixel in the segment by a sequence of moves up, down, left or right.

Design an efficient algorithm to find the size of the largest segment in the image.

Additional problems: Optional

All-Pair-Shortest-Paths via matrix multiplication: In the APSP problem the goal is to compute the shortest path between all pairs of vertices $u, v \in V$. Note that the output is of size $\Theta(|V|^2)$ which means any algorithm for APSP runs in $\Omega(|V|^2)$.

1. We can solve the problem simply by running Dijkstra's algorithm |V| times. What is the running time of this approach? What does the running time become for sparse graphs $(E = \theta(V))$ and for dense graphs $(E = \theta(V^2))$?

We can obtain another APSP algorithm by working on adjacency matrix of the graph, which we denote by A: for weighted graphs, a_{ij} is equal to the weight w_{ij} of the edge (v_i, v_j) ; w_{ij} is assumed to be ∞ is the edge does not exist.

Let A, B be two matrices, and let $C = A \cdot B$. Remember that

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

We redefine the \sum and \cdot operators in matrix multiplication to mean *minimum* and +, respectively. That is,

$$c_{ij} = min_{k=1..n} \{a_{ik} + b_{kj}\}$$

- 2. What does $A \cdot A$ represent in terms of paths in graph G?
- 3. What about $\min\{A, A \cdot A\}$?
- 4. How fast can you compute $B = \min\{A, A \cdot A\}$?
- 5. Sketch an algorithm for computing APSP using this approach and estimate its running time. Hint: express it as computing some power B^k . What is a sufficient value of k?
- 6. Improve your algorithm by being smart about how you compute powers. Hint: aim to compute a^n in $O(\lg n)$ rather than in O(n) time.
- 7. Describe how this corresponds to dynamic programming.

Hint: consider the following subproblem: $d_k(u, v)$ is the shortest path from u to v that consists of at most k edges. What does $d_1(u, v)$ correspond to? How do you define $d_2(u, v)$ in terms of $d_1(u, v)$?