Week 3: Lab

Collaboration level 0 (no restrictions). Open notes.

1. Consider the linear-time merge algorithm discussed in the notes and a possible implementation below. How many element comparisons will the standard merge function take to merge the following left and right lists ?
left $=[1,3,4,5,6,7,8]$, right $=[1,5,9,11,12,16]$

Merge(left, right)

```
result = []
i=0
j=0
while i < len(left) and j < len(right):
        if left[i] < right[j]:
            result.append(left[i])
            i = i+1
        else:
            result.append(right[j])
            j = j+1
        # add any left overs
        while i < len(left):
            result.append(left[i])
            i = i+1
    while j < len(right):
        result.append(right[j])
        j = j+1
        return result
```

A 8
B 9
C 10
D 13

Find a $\Theta()$ bound for the following recurrences using iteration. Assume $T(1)=1$.

What we expect: show $O(1)$ steps of your iteration, with the general formula, the recursion depth, and the final $\Theta()$ bound for $T(n)$. Do not write your answers on this page. Use a separate page for each problem and show your work.
2. $T(n)=T(n / 2)+1$
3. $T(n)=T(n / 3)+1($ assume $T(i)=1$ for $i=1,2)$.
4. $T(n)=T(n / 10)+1$ (assume $T(i)=1$ for $i<10)$.
5. $T(n)=T(2 n / 3)+1($ assume $T(i)=1$ for $i=1,2)$.
6. $T(n)=T(n-1)+1$
7. $T(n)=T(n-2)+1($ assume $T(i)=1$ for $i=1,2)$.
8. $T(n)=T(n-3)+1($ assume $T(i)=1$ for $i=1,2,3)$.
9. $T(n)=T(n / 2)+n$
10. $T(n)=T(n / 3)+n($ assume $T(i)=1$ for $i<3)$.
11. $T(n)=3 T(n / 3)+\Theta(n)$ (assume $T(i)=1$ for $i<3)$.
12. $T(n)=5 T(n / 5)+\Theta(n)$ (assume $T(i)=1$ for $i<5)$.
13. $T(n)=T(n-1)+n$
14. $T(n)=T(n-2)+\Theta(n)$ (assume $T(i)=1$ for $i=1,2)$.
15. $T(n)=T(n-1)+2 n-3$, with $(T(1)=1$
16. $T(n)=T(\sqrt{n})+1$
17. $T(n)=7 T(n / 2)+n^{3}$
18. $T(n)=7 T(n / 2)+n^{2}$
19. $T(n)=4 T(n / 3)+2 n-1$, with $(T(1)=T(2)=1$
20. $T(n)=3 T(n / 2)+n^{2}$, with $(T(1)=1$
21. $T(n)=2 T(n-1)+\Theta(1)$
22. (challenge) $T(n)=T(n / 3)+T(2 n / 3)+\Theta(n)$ (only guess the solution)
23. (challenge) $T(n)=T(n / 3)+T(n / 4)+\Theta(n)$ (only guess the solution)
24. (challenge) $T(n)=T(n / 2)+T(n / 4)+T(n / 10)+\Theta(n)$ (only guess the solution)
25. Based on all examples seen so far, list recurrences that solve to:
(a) $\Theta(\lg n)$
(b) $\Theta(n)$
(c) $\Theta(n \lg n)$
(d) $\Theta\left(n^{2}\right)$
(e) exponenital

For each category, enumerate all recurrences seen so far that fall into that category, and add at last one new one.

Partial Answers

1. B (9 comparisons)
2. $T(n)=T(n / 2)+1: \Theta(\lg n)$
3. $T(n)=T(n / 3)+1($ assume $T(i)=1$ for $i=1,2): \Theta(\lg n)$
4. $T(n)=T(n / 10)+1($ assume $T(i)=1$ for $i<10): ~ \Theta(\lg n)$
5. $T(n)=T(2 n / 3)+1($ assume $T(i)=1$ for $i=1,2): \Theta(\lg n)$
6. $T(n)=T(n-1)+1: ~ \Theta(n)$
7. $T(n)=T(n-2)+1($ assume $T(i)=1$ for $i=1,2): \Theta(n)$
8. $T(n)=T(n-3)+1($ assume $T(i)=1$ for $i=1,2,3): \Theta(n)$
9. $T(n)=T(n / 2)+n: \Theta(n)$
10. $T(n)=T(n / 3)+n($ assume $T(i)=1$ for $i<3): ~ \Theta(n)$
11. $T(n)=3 T(n / 3)+\Theta(n)$ (assume $T(i)=1$ for $i<3): ~ \Theta(n \lg n)$
12. $T(n)=5 T(n / 5)+\Theta(n)$ (assume $T(i)=1$ for $i<5): ~ \Theta(n \lg n)$
13. $T(n)=T(n-1)+n: \Theta\left(n^{2}\right)$
14. $T(n)=T(n-2)+\Theta(n)$ (assume $T(i)=1$ for $i=1,2): ~ \Theta\left(n^{2}\right)$
15. $T(n)=T(n-1)+2 n-3$, with $\left(T(1)=1: \Theta\left(n^{2}\right)\right.$
16. $T(n)=T(\sqrt{n})+1: \Theta(\lg \lg n)$
17. $T(n)=7 T(n / 2)+n^{3}: \Theta\left(n^{3}\right)$
18. $T(n)=7 T(n / 2)+n^{2}: T(n)=\Theta\left(n^{\log _{7} 8}\right)$
19. $T(n)=4 T(n / 3)+2 n-1$, with $\left(T(1)=T(2)=1: T(n)=\Theta\left(n^{\log _{3} 4}\right)\right.$
20. $T(n)=3 T(n / 2)+n^{2}$, with $\left(T(1)=1: T(n)=\Theta\left(n^{2}\right)\right.$
21. $T(n)=2 T(n-1)+\Theta(1): T(n)=\Theta\left(2^{n}\right)$ Note: For exponential recurrences we are usually happy with just a lower bound.
22. (challenge) $T(n)=T(n / 3)+T(2 n / 3)+\Theta(n): \mathrm{n} / \mathrm{a}$
23. (challenge) $T(n)=T(n / 3)+T(n / 4)+\Theta(n): \mathrm{n} / \mathrm{a}$
24. (challenge) $T(n)=T(n / 2)+T(n / 4)+T(n / 10)+\Theta(n): \mathrm{n} / \mathrm{a}$
