## Week 5: Lab

Collaboration level 0 (no restrictions). Open notes.

1. Consider a decision tree corresponding to a comparison-based sorting algorithm; and consider the shortest path from the root to a leaf. What does this path correspond to, in terms of running time?
2. What is the smallest possible depth of a leaf in a decision tree for a comparison-based sort of n elements?
3. Suppose that we were to rewrite the last for loop in Counting-sort as: for $\mathrm{j}=1$ to A.length (instead of: for $\mathrm{j}=$ A.length down to 1 ). Would the algorithm work (i.e. sort properly)? What would change?
4. Assume you have $n$ elements in the range $\{-20,-19, \ldots, \ldots, 19,20\}$. How would you modify Counting-sort to sort this array?
5. Assume you have $n=1,000$ integers in the range $\{0, . ., 50\}$ and you need to sort them. Would you use Counting-sort or Quicksort, and why?
6. Describe one scenario when Counting-sort is more efficient than Quicksort.
7. Describe one scenario when Quicksort is more efficient than Counting-sort.
8. Describe one scenario when you cannot use Counting-sort.
9. Recall that in the (smart) SELECT() algorithm described in the notes, the input elements are divided into groups of 5 . In this problem we'll look at what happens if the input is divided into groups of 7 element instead.
(a) As before, the algorithm finds a "good" pivot before calling Partition: In this case, for each group of 7 elements it computes its median, and then finds the median of these medians. Denote it by $x$. Using the same argument as in the notes, find out how many
elements in the input are guaranteed to be $<x$; and how many elements are guaranteed to be $>x$, respectively.
(b) Write the recurrence corresponding to this version of the Select() algorithm.
(c) Does this solve to $O(n)$ time?
(d) Based on this, does dividing the input into groups of 7 elements lead to a linear time SELECT() algorithm?

Note: Using same arguments, it can be shown that groups of size $>5$ lead to a linear time algorithm, and groups of size $<5$ do not lead to a linear algorithm.
10. Let $A$ be a list of $n$ (not necessarily distinct) integers. Describe an $O(n)$-algorithm to test whether any item occurs more than $\lceil n / 2\rceil$ times in $A$.
(a) You may assume that the integers are in a small range, $K=O(n)$.
(b) Come up with a general solution, without making any additional assumptions about the integers (in particular you may not assume that the range is small). Hint: use Select()
11. (CLRS 9-1) Given a set of $n$ numbers, we wish to find the $i$ largest in sorted order using a comparison-based algorithm. Spell out the algorithm that implements each of the following methods with the best asymptotic worst-case running time, and analyze the running times of the algorithms on terms of $n$ and $i$.
(a) Sort the numbers, and list the $i$ largest.
(b) Build a max-priority queue from the numbers, and call EXTRACT-MAX $i$ times.
(c) Use a SELECT algorithm to find the $i$ th largest number, partition around that number, and sort the $i$ largest numbers.

Note: For each problem we expect a justification of the answer; if you give an algorithm, we expect pseudocode, the main idea, justification of correctness, and analysis.

